From Cacheopedia
Jump to: navigation, search

(Note: Content "borrowed" from Wikipedia. http://en.wikipedia.org/wiki/Waypoint)


Waypoints are sets of coordinates that identify a point in physical space. Coordinates used can vary depending on the application. For terrestrial navigation these coordinates can include longitude and latitude. Air navigation also includes altitude. Waypoints have only become widespread for navigational use by the layman since the development of advanced navigational systems, such as the Global Positioning System (GPS) and certain other types of radio navigation. Waypoints located on the surface of the Earth are usually defined in two dimensions (e.g., longitude and latitude); those used in the Earth's atmosphere or in outer space are defined in at least three dimensions (four if time is one of the coordinates, as it might be for some waypoints outside the Earth).

Although the term waypoint has only come into common use in recent years, the equivalent of a waypoint in all but name has existed for as long as human beings have navigated. Waypoints have traditionally been associated with distinctive features of the real world, such as rock formations, springs, oases, mountains, buildings, roadways, waterways, railways, and so on. Today, these associations persist, but waypoints are more often associated with physical artifacts created specifically for navigation, such as radio beacons, buoys, satellites, control points, etc.

In the modern world, waypoints are increasingly abstract, often having no obvious relationship to any distinctive features of the real world. These waypoints are used to help define invisible routing paths for navigation. For example, artificial airways—“highways in the sky” created specifically for purposes of air navigation—often have no clear connection to features of the real world, and consist only of a series of abstract waypoints in the sky through which pilots navigate; these airways are designed to facilitate air traffic control and routing of traffic between heavily traveled locations, and do not reference natural terrain features. Abstract waypoints of this kind have been made practical by modern navigation technologies, such as land-based radio beacons and the satellite-based Global Positioning System (GPS).

Abstract waypoints typically have only specified longitude and latitude or UTM coordinates plus the reference datum, and often a name if they are marked on charts, and are located using a radio navigation system such as a VOR or GPS receiver. A waypoint can be a destination, a fix along a planned course used to make a journey, or simply a point of reference useful for navigation.

Waypoints and GPS

GPS systems are increasingly used to create and use waypoints in navigation of all kinds. A typical GPS receiver can locate a waypoint with an accuracy of three meters or better when used with land-based assisting technologies such as the Wide Area Augmentation System (WAAS). Waypoints can also be marked on a computer mapping program and uploaded to the GPS receiver, marked on the receiver's own internal map, or entered manually on the device as a pair of coordinates.

If the GPS receiver has track-logging capabilities, one can also define waypoints after the fact from where one has been. For example, marine GPS receivers often have a "man overboard" function, which instantly creates a waypoint in the receiver for the boat's position when enabled and then begins displaying the distance and course back to that position.

In GPS navigation, a "route" is usually defined as a series of two or more waypoints. To follow such a route, the GPS user navigates to the nearest waypoint, then to the next one in turn until the destination is reached. Most receivers have the ability to compute a great circle route towards a waypoint, enabling them to find the shortest route even over long distances, although waypoints are often so closely spaced that this isn't a factor.

Many GPS receivers, both military and civilian, now offer integrated cartographic databases (also known as base maps), allowing users to locate a point on a map and define it as a waypoint. Some GPS systems intended for automobile navigation can generate a suggested driving route between two waypoints, based on the cartographic database. As one drives along the route, the system indicates the driver's current location and gives advance notice of upcoming turns. The best of these systems can take into account traffic restrictions such as one-way streets and intersections where left or right turns are prohibited when computing the suggested driving route.

Most GPS receivers allow the user to assign a name to each waypoint. Many models also let the user select a symbol or icon to identify the waypoint on a graphical map display from a built-in library of icons. These include standard map symbols for marine navigation aids such as buoys, marinas and anchorages, as well as such land-based symbols as churches, bridges, shopping centers, parks, and tunnels.

GPS receivers used in air navigation have databases which contain named waypoints, radio navigation aids, airports and helo-ports. These references comprise the National Airspace System's method of allowing air traffic to select routes that yield efficient point to point navigation. Waypoints are often used in the termination phase of a flight to its destination airport. Some GPS receivers are integrated into autopilot or flight management system, to aid the pilot in control of an aircraft. Waypoints may be found on Aeronautical Charts known as IFR Enroute Charts, Terminal Arrival Procedures and Sectional Charts.

Waypoints without GPS

Although the concept of waypoints has been greatly popularized among non-specialists by the development of the GPS, waypoints can be used with other navigational aids. A notable example is the worldwide use, in orienteering sports, of waypoints with a map that omits a coordinate system (see Control point (orienteering)).

In aerial celestial navigation, waypoints are precomputed along an aircraft's great circle route to divide the flight into rhumb lines and allow celestial fixes to be more rapidly taken using the pre-computed intercept method.

In air navigation, waypoints are sometimes defined as intersections between two VOR radials, or in terms of specific distances and headings towards or away from a radio beacon. For visual air navigation (see the article on visual flight rules), waypoints may be directly associated with distinctive features on the ground that are easily identifiable from aircraft, such as stadiums, power plants, racetracks, etc. Temporary waypoints are sometimes defined as traffic requires, e.g., air-traffic controllers may instruct a pilot to reference a terrain feature at “your ten o'clock position, two miles.”

Personal tools